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Abstract. Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that affects millions of individuals worldwide. Early and accu-
rate diagnosis is crucial for effective intervention and patient care. This
study aims to develop a reproducible deep learning model based on con-
volutional neural networks (CNNs) to differentiate between AD patients
and cognitively normal participants using brain MRI scans.

The chosen CNN model is not able to appropriately differentiate AD pa-
tients from cognitively normal (CN) participants. The attribution maps
associated to the trained network highlighted regions known to be af-
fected by the disease (medial temporal regions).

This reproducible study questions the potential of convolutional neural
networks in differentiating Alzheimer’s disease patients from cognitively
normal individuals based on brain MRI scans and a possible clinical
application. The open-source code used in this study is made available
to facilitate further research and ensure transparency and reproducibility
in the field of neuroimaging-based AD diagnosis.

Keywords: Alzheimer’s disease · Deep Learning · Magnetic Resonance
Imaging.

1 Introduction

Alzheimer’s disease (AD) affects over 20 million people worldwide. Neuroimaging
provides useful information to identify AD [1], such as the atrophy due to gray
matter loss with anatomical magnetic resonance imaging (MRI). A major inter-
est is then to analyze those markers to identify AD at an early stage. Machine
learning and deep learning methods have the potential to assist in identifying
patients with AD by learning discriminative patterns from neuroimaging data
[2].
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As the most widely used architecture of deep learning, convolutional neural
networks (CNN) have attracted huge attention thanks to their great success in
image classification [3]. Contrary to conventional machine learning, deep learning
allows the automatic abstraction of low-to-high level latent feature representa-
tions. Thus, one can hypothesize that deep learning depends less on image pre-
processing and requires less prior on other complex procedures, such as feature
selection, resulting in a more objective and less bias-prone process [4].

The purpose of this paper is to explain the results of a deep learning network
trained to differentiate Alzheimer’s disease patients from cognitively normal par-
ticipants. The source code for the experiments and models described in this paper
will be made available on GitHub and is attached to this submission during the
review process.

2 Materials

In this study, we utilized data from the Open Access Series of Imaging Stud-
ies dataset3. This cohort includes 416 participants categorized into two distinct
groups: CN (Cognitively Normal) or AD (Alzheimer’s Disease) [5]. This co-
hort covers a large age range of 18 to 96. To facilitate our analysis, we further
subdivided the CN group into two distinct subgroups based on age. The CNold

subgroup consists of participants with a minimum age of 62 and the CNyoung

subgroup includes participants who are strictly younger than 62.
The CNold subjects have an average age of 78.8 and a mean MMSE score

of 28.8, while the CNyoung subjects have an average age of 28.8. As for the AD
subjects, they have an average age of 79.0 and a mean MMSE score of 26.5.
Clinical scores were not available for the younger participants involved in this
study, but one could hypothesize that the mean MMSE score of the CNyoung

subjects is its maximal value (30).

3 Methods

3.1 Preprocessing of T1-weighted MRI

The OASIS dataset underwent curation and conversion into the Brain Imaging
Data Structure (BIDS) format [6] using the Clinica software (v0.7.6) [7,8]. For
preprocessing the T1-weighted MR images, we applied the t1-linear pipeline
from Clinica [7], which acts as a wrapper for the ANTs software (v2.4.4) [9]. Bias
field correction was applied using the N4ITK method [10]. To facilitate cross-
subject comparisons, we performed an affine registration of the images to the
MNI space using ANTs [11]. Subsequently, the registered images were rescaled
to standardize the intensity values within the minimum and maximum ranges.
To remove background noise, we cropped the images, resulting in a final size of
169×208×179 with isotropic 1 mm voxels. To ensure the reproducibility of our
results, we set the random seed of ANTs to 42.

3 Access the OASIS dataset here: https://oasis-brains.org

https://oasis-brains.org
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Fig. 1: Architecture of the 3D subject-level CNN. For each convolutional block,
we only display the convolutional and max pooling layers. Conv: convolutional
layer;RELU: Rectified Linear Unit; FC: fully connected layer.

3.2 Deep learning network

Architecture In order to fully leverage the spatial information present in the
MR images, we opted for a 3D CNN architecture, as illustrated in Figure 1.
This architecture consisted of 5 convolutional blocks and 3 fully connected (FC)
layers. Each convolutional block is a sequence of one convolutional layer, one
batch normalization layer, one ReLU activation layer, and one max-pooling layer.

Training The network was trained to differentiate AD from CN participants
by optimizing the cross-entropy loss criterion. The weights of the network were
optimized using Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ = 10−8, no weight
decay) with a learning rate of 3.31e-3, during 100 epochs. A batch size of 8
is used. At the end of each epoch the loss of the network is computed on the
validation set. The best network corresponds to the one which obtained the
lowest validation loss value during the training process.

3.3 Evaluation strategy

Explainability In this study, we decided to focus on using the gradient back-
propagation method for generating attribution maps, as it is both widely utilized
and conceptually straightforward. These attribution maps essentially capture the
gradients of an output node concerning an image. In our specific case, this output
node corresponds to the CN group. Essentially, the pixel intensities within an
attribution map indicate the changes required to transform a given image into
a sample that resembles the CN group.

To create a group attribution map for AD patients, we took the mean value
of the 10 attribution maps derived from our dataset’s AD patients. However, it’s
important to note that this voxel-based approach often produces somewhat noisy
outputs. To address this, we applied a Gaussian filter with a standard deviation
of σ = 2 to the group attribution map, which helped enhance the visualization
of relevant regions for our analysis.
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4 Results

The performance of the network is lower when considering only the old popula-
tion compared to using the whole CN group. Indeed 8 old CN participants on
10 are classified as AD patients (see Table 1).

Table 1: Confusion matrix of the CNN.
AD CN

AD 9 1

CN (old) 8 2

CN (young) 0 10

Both clinical scores are correlated with the probability of the diagnosis. How-
ever the strongest correlation is with age (correlation coefficient = 0.87). The
sex is not correlated with the diagnosis.

In Figure 2, one can see that the network prominently highlights the medial
temporal lobe, a region known to be atrophied in Alzheimer’s disease. Neverthe-
less, on the central slices (75 & 95), the network’s attention extends beyond the
brain, including areas adjacent to the cerebellum.

Fig. 2: Group attribution map of AD patients.

5 Conclusion

While our network’s outputs exhibit some notable associations with traditional
clinical scores like MMSE and CDR, and the attribution map effectively spot-
lights regions known to be atrophied in AD, a particularly problematic discovery
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is the robust link we’ve uncovered with age, a well-established contributor to
brain atrophy and related changes.

Our upcoming research endeavors will explore why the attribution map in-
cludes regions beyond the typically implicated medial temporal areas. Further-
more, we’ll focus on understanding how these additional regions might be linked
to age detection, further enriching our comprehension of the multifaceted land-
scape of AD diagnosis.

References

1. Ewers, M., Sperling, R.A., Klunk, W.E., Weiner, M.W., Hampel, H.: Neuroimaging
markers for the prediction and early diagnosis of Alzheimer’s disease dementia.
Trends in Neurosciences 34(8) (2011) 430–442

2. Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bot-
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