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Abstract. Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that affects millions of individuals worldwide. Early and accu-
rate diagnosis is crucial for effective intervention and patient care. This
study aims to develop a reproducible deep learning model based on con-
volutional neural networks (CNNs) to differentiate between AD patients
and cognitively normal participants using brain MRI scans.
The chosen CNN model demonstrated a low level of accuracy in dis-
tinguishing AD patients from cognitively normal controls. On the test
set, the model achieved a balanced accuracy of 71.3%. The attribution
maps associated to the trained network showed different patterns after
retraining the networks.
This reproducible study questions the potential of convolutional neu-
ral networks in effectively differentiating Alzheimer’s disease patients
from cognitively normal individuals based on brain MRI scans. The
open-source code used in this study is made available to facilitate fur-
ther research and ensure transparency and reproducibility in the field of
neuroimaging-based AD diagnosis.

Keywords: Alzheimer’s disease · Deep Learning · Magnetic Resonance
Imaging.

1 Introduction

Alzheimer’s disease (AD) affects over 20 million people worldwide. Neuroimaging
provides useful information to identify AD [1], such as the atrophy due to gray
matter loss with anatomical magnetic resonance imaging (MRI). A major inter-
est is then to analyze those markers to identify AD at an early stage. Machine
learning and deep learning methods have the potential to assist in identifying
patients with AD by learning discriminative patterns from neuroimaging data
[2].
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As the most widely used architecture of deep learning, convolutional neural
networks (CNN) have attracted huge attention thanks to their great success in
image classification [3]. Contrary to conventional machine learning, deep learning
allows the automatic abstraction of low-to-high level latent feature representa-
tions. Thus, one can hypothesize that deep learning depends less on image pre-
processing and requires less prior on other complex procedures, such as feature
selection, resulting in a more objective and less bias-prone process [4].

The purpose of this paper is to explain the results of a deep learning network
trained to differentiate Alzheimer’s disease patients from cognitively normal par-
ticipants. The source code for the experiments and models described in this paper
will be made available on GitHub and is attached to this submission during the
review process.

2 Materials

The data set used to train the network is OASIS-33[5]. This data set includes
755 cognitively normal adults and 622 individuals at various stages of cognitive
decline ranging in age from 42 to 95 years, as described in Table 1.

For our study we defined two different labels, which mainly depend on the
value of the Clinical Dementia Rating (CDR) score:

– CN includes all the images of the cognitively normal adults (CDR=0) with
a valid T1-MRI at baseline.

– AD includes all the images of the individuals with mild dementia (CDR>=1)
with a valid T1-MRI at baseline.

Table 1: Summary of participant demographics, mini-mental state examination
(MMSE) and global clinical dementia rating (CDR) scores at baseline.
Values are presented as mean (standard deviation) [range]. M: male, F: female

Participants Images Age Gender MMSE CDR

CN 723 1245 73.4 (5.9) [45, 89] 354 M / 369 F 29.1 (1.1) [24, 30] 0: 723
AD 543 874 75.6 (6.9) [50, 92] 245 M / 298 F 23.2 (2.1) [18, 27] 1: 368; 2: 175

The images were considered as valid if they passed an automatic quality
check [6]. This procedure relies on a pre-trained deep learning network4 which
outputs a probability indicating how accurate the registration is. We excluded
the scans with a probability lower than 0.5 and visually checked the remaining
scans whose probability were lower than 0.70. As a result, 24 CN participants
and 32 AD patients were removed.

3 https://www.oasis-brains.org
4 https://github.com/vfonov/deep-qc

https://www.oasis-brains.org
https://github.com/vfonov/deep-qc
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3 Methods

3.1 Preprocessing of T1-weighted MRI

For anatomical T1w MRI, the preprocessing pipeline was based on SPM12. First,
the Unified Segmentation procedure [7] is used to simultaneously perform tis-
sue segmentation, bias correction and spatial normalization of the input image.
Next, a group template is created using DARTEL, an algorithm for diffeomor-
phic image registration [8], from the subjects’ tissue probability maps on the
native space, usually GM, WM and CSF tissues, obtained at the previous step.
Here, not only the group template is obtained, but also the deformation fields
from each subject’s native space into the DARTEL template space. Lastly, the
DARTEL to MNI method [8] is applied, providing a registration of the native
space images into the MNI space: for a given subject its flow field into the DAR-
TEL template is combined with the transformation of the DARTEL template
into MNI space, and the resulting transformation is applied to the subject’s
different tissue maps. As a result, all the images are in a common space, provid-
ing a voxel-wise correspondence across subjects. They all have the same size of
145x145x145.

3.2 Deep learning network

Hyperparameter search We looked for the best training hyperparameters, and
then we ran a grid search including:

– the learning rate, which could take 5 different values (10e-1, 10e-2, 10e-3,
10e-4, 10e-5),

– the weight decay, which could take 2 different values (0, 0.01),
– the optimization algorithm (Adam, Adagrad or Adadelta).

We chose the set of hyperparameters leading to the best performance. Dur-
ing the grid search all networks were initialised with the same weights and the
train/validation split was identical for all runs.

Architecture We used a common deep learning architecture: ResNet [9]. This
architecture takes as input 2D images, thus for each volume we extracted the
middle axial slice of the 3D volume (z=72) and gave it as input to the network.

Training All networks were trained during 100 epochs, to minimize the cross-
entropy loss. The hyperparameter search led to the choice of the Adagrad op-
timizer, with a weight decay of 0.01 and a learning rate of 10e-3. The weights
of the network were updated based on batches of 32 images. During training,
we used the 5 neighbouring slices to the middle one (z=70-74) to perform data
augmentation.

Computational setup All experiments ran on a computer with 24 cores and one
NVIDIA GPU (GeForce GTX 1650). Each run of the training task required
4h20. The evaluation and explainability tasks only needed a few seconds.
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3.3 Evaluation strategy

Validation procedure For each label, 100 volumes were randomly chosen for eval-
uation and explainability purposes. The rest of the images were split between
training (80%) and validation (20%) sets. For some experiments this split was
kept identical by setting a value for the random seed used.

Explainability We explained our networks by generating attribution maps with
the gradient back-propagation method [10]. Once the network is trained, each
image of the CN group was propagated through the network, then the gradients
corresponding to an increase of the value of the node associated to the AD class
were back-propagated to the level of the image. These gradients represent how
these CN images should change so the network classifies them in the AD class. We
assumed that the value of the absolute value of the gradient was correlated with
the importance of each pixel, and that the sign didn’t carry any information
on the importance of the pixel, then we used the absolute value of the mean
map obtained over all CN images in the test set. AD images were not used for
explainability purposes.

Metrics For each experiment 30 networks were trained. We compared the vari-
ability of the balanced accuracy (BACC) of these networks for each experi-
ment. To evaluate the robustness of the explainability method we used the mean
squared error (MSE) between each map obtained with a network of the experi-
ment and the average map obtained with all the networks of this experiment.

4 Results

We evaluated the robustness of our setup by evaluating the variability of the
result if (1) the initial weights are identical, (2) the train/validation splits are
identical, (3) both of the 2 previous conditions are fulfilled, (4) none of them are
fulfilled.

Training robustness All the different setups gave similar mean performance. We
observe in Figure 1 a significance in the variability obtained in the setup (3),
with both the initial weights and the train/validation splits being fixed, and all
the other setups. The other setups, in which only one condition or none was
fixed showed non-significantly different variabilities in the network’s success.

Explainability robustness For all the setups the variability around the mean
CN attribution map over the 30 runs was similar (Figure 2). Fixing the initial
weights and/or the train/validation splits didn’t seem to lower the variability of
the attribution maps obtained. The mean CN attribution maps obtained for the
first run of each setup are shown in Figure 3.
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Fig. 1: Variability of the balanced accuracy on the test set obtained for 30 runs
of each setup. (1) identical intialisation, (2) identical train/validation splits, (3)
identical initialisation and train/validation splits, (4) no fixed initialisation or
splits. The Levene test was used to compute the significance of the difference
between the variability of the performance. : * correspond to a p-value < 0.05,
** corresponds to a p-value < 0.01, *** corresponds to a p-value < 0.001

5 Conclusion

Our network performed poorly with a balanced accuracy of 71.3%. We showed
that the training process is not equally stable and that its variability can be low-
ered by fixing the initial weights of the network and the images used for training
and validation. However, this is still not enough to guarantee a deterministic
result as the learnt weights also depend on the order in which the batches of
images are fed in the network during training. Another important conclusion is
that this wasn’t insufficient to guarantee the stability of the attribution maps,
which remain equally different from run to run even when the initialisation and
split are fixed. This variability questions the ability of the network to robustly
identify patterns to predict Alzheimer’s disease from T1-MRI.
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Fig. 2: Variability of the balanced accuracy on the test set obtained for 30 runs
of each setup. (1) identical intialisation, (2) identical train/validation splits, (3)
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(a) Initialization (b) Split

(c) Both (d) None

Fig. 3: Attribution maps for the CN group obtained on the first run of each
setup.
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