
Differentiating Alzheimer’s Disease from
Cognitively Normal Individuals Using

Convolutional Neural Networks: A Reproducible
Study

Elina Thibeau-Sutre1, Camille Brianceau2, and Ninon Burgos2

1 Department of Applied Mathematics, Technical Medical Centre, University of
Twente, Enschede, The Netherlands

e.thibeau-sutre@utwente.nl
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Abstract. Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that affects millions of individuals worldwide. Early and accu-
rate diagnosis is crucial for effective intervention and patient care. This
study aims to develop a reproducible deep learning model based on con-
volutional neural networks (CNNs) to differentiate between AD patients
and cognitively normal participants using brain MRI scans.
The chosen CNN model demonstrated a high level of accuracy in dis-
tinguishing AD patients from cognitively normal controls. On the test
set, the model achieved a balanced accuracy of 92.3%. The attribution
maps associated to the trained network highlighted regions known to be
affected by the disease (medial temporal regions).
This reproducible study demonstrates the potential of convolutional neu-
ral networks in effectively differentiating Alzheimer’s disease patients
from cognitively normal individuals based on brain MRI scans. The high
balanced accuracy achieved by the model highlight its clinical relevance
and potential as a valuable diagnostic tool. The open-source code used
in this study is made available to facilitate further research and ensure
transparency and reproducibility in the field of neuroimaging-based AD
diagnosis.

Keywords: Alzheimer’s disease · Deep Learning · Magnetic Resonance
Imaging.

1 Introduction

Alzheimer’s disease (AD) affects over 20 million people worldwide. Neuroimaging
provides useful information to identify AD [1], such as the atrophy due to gray
matter loss with anatomical magnetic resonance imaging (MRI). A major inter-
est is then to analyze those markers to identify AD at an early stage. Machine
learning and deep learning methods have the potential to assist in identifying
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patients with AD by learning discriminative patterns from neuroimaging data
[2].

As the most widely used architecture of deep learning, convolutional neural
networks (CNN) have attracted huge attention thanks to their great success in
image classification [3]. Contrary to conventional machine learning, deep learning
allows the automatic abstraction of low-to-high level latent feature representa-
tions. Thus, one can hypothesize that deep learning depends less on image pre-
processing and requires less prior on other complex procedures, such as feature
selection, resulting in a more objective and less bias-prone process [4].

The purpose of this paper is to explain the results of a deep learning network
trained to differentiate Alzheimer’s disease patients from cognitively normal par-
ticipants. The source code for the experiments and models described in this paper
will be made available on GitHub and is attached to this submission during the
review process.

2 Materials

Our classifier was trained and evaluated on the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) data set. More specifically, our population includes 2 labels:

CN Cognitively Normal images corresponds to the baseline image of partici-
pants who were always diagnosed as CN,

AD Alzheimer’s Disease images corresponds to the baseline image of partici-
pants who were always diagnosed as AD.

The stability of the diagnosis was established by considering the first 3 years
of follow-up only. Participants with less than 3 years of follow-up or no T1w-
MRI with N3 preprocessing at baseline were excluded from the data set. Table
1 summarizes the characteristics of our different populations.

Table 1: Summary of participant demographics, mini-mental state examination
(MMSE) and global clinical dementia rating (CDR) scores at baseline for ADNI.
Values are presented as mean (standard deviation) [range]. M: male, F: female

Images Age Gender MMSE CDR

CN 330 74.4 (5.8) [59.8, 89.6] 160 M / 170 F 29.1 (1.1) [24, 30] 0: 330
AD 336 75.0 (7.8) [55.1, 90.9] 185 M / 151 F 23.2 (2.1) [18, 27] 0.5: 160; 1: 175; 2: 1

3 Methods

3.1 Preprocessing of T1-weighted MRI

Several scans are provided for each time point of each participant in ADNI. For
each participant we chose to use its baseline image which was already prepro-
cessed by the N3 algorithm by the data set provider. Then the N4ITK method
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[5] was used for bias field correction. Next, a linear (affine) registration was per-
formed using the SyN algorithm from ANTs [6] to register each image to the
MNI space (ICBM 2009c nonlinear symmetric template) [7,8]. To improve the
computational efficiency, the registered images were further cropped to remove
the background. The final image size is 169×208×179 with 1 mm3 isotropic
voxels. Finally intensities were rescaled to [0,1] based on min and max values.

3.2 Deep learning network

Our network takes as input the whole 3D image and outputs a value for each of
the label (AD and CN) which can be seen as probabilities to belonging to each
of these classes after applying a SoftMax.

Hyperparameter search We performed a random search to find the best possible
network hyperparameters [9]. The following parameters were fixed:

– a convolutional block consists of:

1. a convolutional layer with a kernel size of 3, padding of 1 and stride of 1.
The first number of channels is 16, the number of channels in one of the
following layers is twice the number of channels in the previous layer.

2. (Optional) a normalisation layer

3. an activation layer

4. a max pooling layer of stride and kernel of size 2.

– the number of nodes of the final fully-connected (FC) layer is 2. The number
of nodes of intermediate FC layers is computed so that the ratio between
the input and output size is the same for every FC layer. An activation layer
follows every FC layer except the last one.

– training hyperparameters were fixed as described in paragraph 3.2, except
for the learning rate which can vary.

If a normalisation layer is chosen, it is the same in all convolutional blocks.
Similarly the same activation function is used after each convolutional or FC
layer. The following parameters can vary: the number of convolutional blocks
(2 to 6), the normalisation layer (batch, instance or none), the activation layer
(ReLU, leaky ReLU or SeLU), the number of FC layers (1 to 4), the learning
rate (0.01 to 0.0001).

Architecture Our CNN architecture was found after 100 runs of the random
search. It includes 4 convolutional blocks and 2 fully connected-layers. One con-
volutional block consists in one convolutional layer with a kernel size of 3, stride
of 1 and padding of 1, an instance normalization layer, a leaky ReLU activation
and a max pooling layer of kernel and stride of 2. A leaky ReLU activation was
also inserted between the two fully-connected layers.
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Training The network was trained to differentiate AD from CN participants
by optimizing the cross-entropy loss criterion. The weights of the network were
optimized using Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ = 10−8, no weight
decay) with a learning rate of 3.31e − 3, during 100 epochs. A batch size of
8 is used. At the end of each epoch the loss of the network is computed on
the validation set. The best network corresponds to the one which obtained the
lowest validation loss value during the training process.

Computational setup We used a computing cluster of 20 nodes. Each node is
composed of 4 Nvidia Tesla V100 32G GPUs and 24 cores. Each run required
10G and 1GPU during approximately 5h30 (this is an average time over all
the runs in the random search, larger architectures requiring more time than
smaller ones). Our final architecture required precisely 5h21 to be fully trained.
The explainability method required 2h54 of running time on 1 GPU with 10G
of memory footprint.

3.3 Evaluation strategy

Validation procedure We split the data set in three sets: training (75%), valida-
tion (10%) and test (15%). We ensured that the sex, age and label distribution
was the same in all sets. This split was performed before the random search,
and the best hyperparameter setup was chosen based on the result on the vali-
dation set only. The test set was used to estimate the performance of the chosen
network and to generate the attribution maps.

Metrics We evaluated the performance of the network by computing the sensi-
tivity, specificity and balanced accuracy of the network.

Explainability The best network was explained by generating attribution maps
with an occlusion method. This method consists in replacing each location of
the input image and the its neighbouring voxels in a 5x5 cube by grey values
(intensity=0.5). For each different location the loss of the network is assessed,
then the value associated with this voxel corresponds to the absolute difference
between this loss and the original loss (the one obtained without perturbing the
image). This method allows to compute one attribution map per participant.
We then computed the mean attribution map over the AD patients to get one
attribution map representative of the disease at the data set level.

4 Results

The best network achieved a balanced accuracy of 92.3%, sensitivity of 100%
and a specificity of 84.6% on the test set. The network failed at recognizing the
oldest CN participants, the mean age of the badly classified CN participants
being 78.6 years, whereas the correctly classified participants had a mean age of
73.5 years. No differences between these two groups in terms of sex, education
and clinical scores were detected.
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Hyperparameter search We studied how sensitive our network was to the different
hyperparameter sets during the random search (see Figure 1). We observed that
below 4 convolutional blocks the performance is significantly worse than with
4 or more. The performance also largely depends on the number of FC layers,
and is degraded by a too large number of layers. The two normalisation layers
give similar results, but significantly different from not using any normalisation
process. The activation layers and different learning rate values gave similar
results.

(a) Convolutional blocks (b) FC layers (c) Normalization layer

(d) Learning rate (e) Activation layer

Fig. 1: Balanced accuracy obtained on the validation set by the 100 runs of
the random search depending on the different values of the hyperparameters.
The significance of the difference between groups is evaluated with the Mann-
Whitney U-test: * correspond to a p-value < 0.05, *** corresponds to a p-value
< 0.001

Explainability The attribution maps of our network are displayed in Figure 2.
Based on the AAL2 neuroanatomical parcellation, we quantified the mean value
of the intensities in each region, normalised by its volume. The results for the
top 5 regions can be found in Table 2.

5 Conclusion

In this article we showed that we could accurately differentiate demented patients
from cognitively normal participants from their brain T1w-MRI. We found that
our result depends on the chosen architecture, and especially the number of
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Fig. 2: Attribution map of the AD group superimposed to the template used for
MRI preprocessing.

Table 2: Top 5 regions in which the mean normalised intensity was the highest
in the attribution map.

Region Side Mean intensity Max intensity

Hippocampus left 0.93 2.01
Parahippocampal left 0.92 4.56
Hippocampus right 0.90 1.87
Amygdala right 0.84 1.38

Temporal Superior pole left 0.76 1.32

layers, but that the tendency was different for convolutional layers (a minimum
of 4 were required) and the FC layers (the performance was hurt by adding
more layers). The regions found in the attribution map corresponds to the ones
clinically known to be affected in Alzheimer’s disease, thus indicating that this
network has the potential to be used in a clinical routine as a support tool for
radiologists. Future work will investigate the robustness of the attribution maps
towards the network hyperparameters.
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